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Goal: measure the top mass as accurately as possible!

What makes for a good top quark mass observable?
Well defined relation to a short distance mass

Threshold scan: 

Good signal to background ratio

•What is a suitable top mass observable? 

•Clear and well defined relation to a short distance mass.

•Good signal to background ratio.

Observables

Threshold Scan

Jet Reconstruction

•Physics well understood 

•NRQCD is the appropriate EFT.

•Well defined relation to short distance mass.

•Backgrounds well understood.

δmth
t ∼ 100MeV

(Peskin & Strassler; Hoang, Manohar, Stewart, Teubner,...)

! !

Top Mass reconstructionTop Mass reconstruction 

•Many open theoretical & experimental  questions 

•Relation to short distance mass.

•Backgrounds,...
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Direct Measurement Methods

ILCThreshold Scan

LHC + ILCInvariant  Mass Reconstruction

What mass?

pole mass? (color triplet !)

ATLAS (l+jets)

The top quark does not 

live by itself !
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Top quark mass observable at the LHC - Jet Reconstruction

Expt. Issues:

•What is a suitable top mass observable? 

•Clear and well defined relation to a short distance mass.

•Good signal to background ratio.

Observables

Threshold Scan

Jet Reconstruction

•Physics well understood 

•NRQCD is the appropriate EFT.

•Well defined relation to short distance mass.

•Backgrounds well understood.

δmth
t ∼ 100MeV

(Peskin & Strassler; Hoang, Manohar, Stewart, Teubner,...)

! !

Top Mass reconstructionTop Mass reconstruction 

•Many open theoretical & experimental  questions 

•Relation to short distance mass.

•Backgrounds,...

1) Determining parton 
momentum
2) Combinatorics
3) Jet energy scale
4) Underlying events
5) Initial & Final state 
radiation
6) b-Jets, b-fragmentation

9) Background & Statistics

7) MC dependence
8) b-tagging efficiency
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Th. Issues:

Top quark mass observable at the LHC - Jet Reconstruction

1) Definition of jet observable with a clear relation to the 
Lagrangian mass

7) Initial state radiation

4) Final state radiation
5) Parton Distribution Functions
6) Beam remenant

2) Color reconnection and soft gluon interactions
3) Summing large logs: 
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Theory Issues for                

• definition of jet observables

• initial state radiation

• final state radiation

• underlying events

• color reconnection & soft gluon 

interactions

• beam remnant

• parton distributions

• summing large logs

• relation to Lagrangian short 

distance mass

First step: we will study

and the issues 
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Theory Issues for                

• definition of jet observables

• initial state radiation

• final state radiation

• underlying events

• color reconnection & soft gluon 

interactions

• beam remnant

• parton distributions

• summing large logs

• relation to Lagrangian short 

distance mass

First step: we will study

and the issues 

These effects can be studied in: 
for
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Theory Issues for                

• definition of jet observables

• initial state radiation

• final state radiation

• underlying events

• color reconnection & soft gluon 

interactions

• beam remnant

• parton distributions

• summing large logs

• relation to Lagrangian short 

distance mass

First step: we will study

and the issues 

8) Underlying events
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Pair Production of Top Jets 

e+e− → tt̄ pp→ tt̄X

LC LHC

Focus of this talk

5



Particle Physics Seminar, ETH Zuerich , May 22, 2007André H. Hoang  - 10

Conceptual Goals                

• relate top jet observables with a given Lagrangian mass

(define suitable short-distance mass with good 

convergence properties       What mass is measured? )

• proof of factorization of dynamics at different length 

scales  (       What has to be computed by theorists ? )

• combined treatement of top production & decay

• separate perturbative from non-perturbative effects

• hopefully better understand & reduce theoretical & 

experimental uncertainties

Tool:  Sequence of Effective Field Theories

Goals for our Analysis

Sequence of Effective Field Theories
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Jet Observable Sensitive to Top Mass
e-

e+

t

t
-

γ,Z•Focus on the dijet region where the top and antitop 

jets have invariant masses close to the top mass.

•The jet observable of interest is the double differential jet invariant mass 

distribution:

top quark mass measurements in the upcoming experiments such a framework is imperative.

A top mass determination method where a systematic analytic framework exists and

where the relation between the Lagrangian top mass parameter m and the measured top

mass can be established to high precision is the threshold scan of the line-shape of the

total hadronic cross section in the top-antitop threshold region, Q ≈ 2m, at a future Linear

Collider [8, 9], where Q is the c.m. energy. In this case the system of interest is a top-

antitop quark pair in a color singlet state and the observable is related to a comparatively

simple counting measurement. The line-shape of the cross section rises near a center of

mass energy that is related to a toponium-like top-antitop bound state with a mass that can

be computed perturbatively to very high precision [10, 11, 12, 13, 14] using non-relativistic

QCD (NRQCD) [15, 16] an effective theory (EFT) for nonrelativistic heavy quark pairs. The

short lifetime of the top quark, τ = 1/Γ ≈ (1.5 GeV)−1, provides an infrared cutoff for all

kinematic scales governing the top-antitop dynamics and leads to a strong power suppression

of non-perturbative QCD effects. Experimental studies concluded that theoretical as well as

experimental systematic uncertainties for this method are at a level of only 100 MeV [17, 18].

The most suitable top quark mass schemes are the so-called threshold masses [12], which

can be related accurately to other short-distance mass schemes such as the running MS

mass. Unfortunately, the threshold scan method cannot be used at the LHC because the

top-antitop invariant mass cannot be determined with sufficient accuracy.

In this work we use EFT’s to provide, for the first time, an analytic framework that can

be applied to systematically describe the perturbative and nonperturbative aspects of top

quark invariant mass distributions obtained from reconstruction. As a first step towards

developing a detailed framework for the LHC, we focus in this work on jets in a e+e−

Linear Collider environment at c.m. energies far above threshold Q ∼ 0.5−1 TeV. For e+e−

collisions strong interaction effects arising from the initial state can be neglected and there

is no need to identify or remove any ‘beam remnant’ or underlying events. Also, in the e+e−

framework it is easier to formulate shape variables like thrust that control the jet-likeness

and the soft dynamics of an event. We consider the double differential top and antitop

invariant mass distribution, where each of the invariant masses, M2
t and M2

t̄ , are defined

from all particles in each of the two hemispheres that are determined by the events thrust

axis. In Fig. 1 we show an example of such an event. Other invariant mass definitions,

e.g. based on kT algorithms and criteria to identify jets from top and antitop decay can be

employed as well. Our approach also works for all-jet and lepton plus jet final states. Our

focus is to study the double differential invariant mass distribution in the peak region close

to the top mass, so that M2
t −m2 ∼ mΓ and M2

t̄ −m2 ∼ mΓ. It is theoretically convenient

to introduce the shifted variables

ŝt,t̄ ≡
st,t̄

m
≡

M2
t,t̄ − m2

m
∼ Γ % m , (1)

because it is only the invariant mass distribution close to the peak that we wish to predict.
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FIG. 2: Sequence of effective field theories used to compute the top/antitop invariant mass distri-
bution in the peak region.

order m, ŝt,t̄ ∼ m. Thus to describe invariant masses in the peak region ŝt,t̄ ∼ Γ the top

and antitop jets are finally computed in Heavy-Quark Effective Theory (HQET) [24] which

represents an expansion in Γ/m ∼ 0.01. We have in fact two copies of HQET, one for the

top and one for the antitop, plus soft interactions between them. In these EFT’s the top

decay can be treated as inclusive and is therefore described by the total top width term Γ

that acts as an imaginary residual mass term [9, 25]. Since HQET is usually understood

as being formulated close to the rest frame of the heavy quark without the external soft

interactions, we refer to these two EFT’s as boosted HQET’s (bHQET’s).1

At leading order in the expansion in m/Q and Γ/m we show that the double differential

invariant hemisphere mass distribution can be factorized in the form
(

dσ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µQ, µm)Hm

(

m,
Q

m
, µm, µ

)

(3)

×
∫

d"+d"−B+

(

ŝt −
Q"+

m
, Γ, µ

)

B−

(

ŝt̄ −
Q"−

m
, Γ, µ

)

Shemi("
+, "−, µ) ,

where ŝt and ŝt̄ are defined in terms of M2
t,t̄ in Eq. (1). The term σ0 is a normalization factor,

and the factors HQ and Hm are matching corrections that are derived from matching and

running in SCET and the bHQET’s, respectively. HQ and Hm are independent of ŝt and ŝt̄

and do not affect the form of the invariant mass distributions. The jet functions B± describe

the QCD dynamics of collinear radiation in the top/antitop direction, and the decay of the

top and antitop quarks near mass shell within the top/antitop jets. They can be computed

perturbatively at the scale µ ∼ Γ since the top width Γ provides an infrared cutoff from

1 We adopt the acronym bHQET in cases where we wish to remind the reader that the residual momentum

components of the heavy quark in the e+e− c.m. frame are not homogeneous, and that additional gluon

interactions occur which are not simply the soft gluons of standard HQET.
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• The top and antitop jets are defined to have the 

invariant masses:

Using the same steps as above for ρ, the factorization theorem for top initiated jets is

dσ

dρ
= σH

0 (µ)

∫ ∞

−∞

dst dst̄ B̃+

( st

mJ
, Γ, µ

)

B̃−

( st̄

mJ
, Γ, µ

)

SHJM(ρ − m2
J

Q2
, st, st̄) , (108)

where the relevant soft-function is

SHJM(ρ, st, st̄) =

∫ ∞

0

d#+ d#− δ
(

ρ − 1

Q2
Max

{

Q#++st, Q#−+st̄

}

)

Shemi(#
+, #−, µ) . (109)

Factorization theorems for other event shapes that are related to d2σ/dM2
t dM2

t̄ can be

derived in an analogous manner. As should be obvious from the definitions of thrust and the

heavy jet mass distribution in Eqs. (105) and (108), these event shape distributions are also

characterized by a peak at shape parameter values that are sensitive to the short-distance

top-quark mass. It is therefore possible to use these event shapes to measure the top-mass

with a precision comparable to the invariant mass distribution discussed in the previous

subsection. A brief numerical analysis of the thrust distribution is given in Sec. IVA.

IV. ANALYSIS OF THE INVARIANT MASS DISTRIBUTION

A. A Simple Leading Order Analysis

The main result of this paper is the formula in Eq. (100) for the double invariant mass

distribution with a short distance top-quark mass suitable for measurements using jets.

In this section we discuss the implications of Eq. (100) for top-mass measurements. For

convenience we rewrite the cross-section in terms of dimension one invariant mass variables

d2σ

dMt dMt̄
=

4MtMt̄ σH
0

(mJΓ)2
F (Mt, Mt̄, µ) , (110)

where σH
0 = σ0HQ(Q, µm)H̃m(mJ , Q/mJ , µm, µ) is the cross-section normalization factor

with radiative corrections, Q is the c.m. energy, and we have defined a dimensionless function

F (Mt, Mt̄, µ) = (mJΓ)2

∫ ∞

−∞

d#+ d#−B̃+

(

ŝt −
Q#+

mJ
, Γ, µ

)

B̃−

(

ŝt̄ −
Q#−

mJ
, Γ, µ

)

Shemi(#
+, #−, µ).

(111)

In terms of Mt and Mt̄ the variables

ŝt = 2Mt − 2mJ , ŝt̄ = 2Mt̄ − 2mJ , (112)

up to small Γ/m power corrections. In Eqs. (110-112) the jet hemisphere invariant masses

are Mt and Mt̄ and the short-distance top-quark mass that we wish to measure is mJ . In

d2σ/dMtdMt̄ the function F dominates the spectrum, while 4MtMt̄ σH
0 /(mJΓ)2 acts as a

normalization constant (since MtMt̄ is essentially constant in the peak region of interest). A

40
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,

•The jet invariant mass condition is characterized as:
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Hemisphere  Masses

• The jet masses are defined to be the mass of all particles in each hemisphere 

perpendicular to the thrust axis as shown below. 

left hemisphere right hemisphere

CollinearSoft

Thrust 

axis

top quark mass measurements in the upcoming experiments such a framework is imperative.

A top mass determination method where a systematic analytic framework exists and

where the relation between the Lagrangian top mass parameter m and the measured top

mass can be established to high precision is the threshold scan of the line-shape of the

total hadronic cross section in the top-antitop threshold region, Q ≈ 2m, at a future Linear

Collider [8, 9], where Q is the c.m. energy. In this case the system of interest is a top-

antitop quark pair in a color singlet state and the observable is related to a comparatively

simple counting measurement. The line-shape of the cross section rises near a center of

mass energy that is related to a toponium-like top-antitop bound state with a mass that can

be computed perturbatively to very high precision [10, 11, 12, 13, 14] using non-relativistic

QCD (NRQCD) [15, 16] an effective theory (EFT) for nonrelativistic heavy quark pairs. The

short lifetime of the top quark, τ = 1/Γ ≈ (1.5 GeV)−1, provides an infrared cutoff for all

kinematic scales governing the top-antitop dynamics and leads to a strong power suppression

of non-perturbative QCD effects. Experimental studies concluded that theoretical as well as

experimental systematic uncertainties for this method are at a level of only 100 MeV [17, 18].

The most suitable top quark mass schemes are the so-called threshold masses [12], which

can be related accurately to other short-distance mass schemes such as the running MS

mass. Unfortunately, the threshold scan method cannot be used at the LHC because the

top-antitop invariant mass cannot be determined with sufficient accuracy.

In this work we use EFT’s to provide, for the first time, an analytic framework that can

be applied to systematically describe the perturbative and nonperturbative aspects of top

quark invariant mass distributions obtained from reconstruction. As a first step towards

developing a detailed framework for the LHC, we focus in this work on jets in a e+e−

Linear Collider environment at c.m. energies far above threshold Q ∼ 0.5−1 TeV. For e+e−

collisions strong interaction effects arising from the initial state can be neglected and there

is no need to identify or remove any ‘beam remnant’ or underlying events. Also, in the e+e−

framework it is easier to formulate shape variables like thrust that control the jet-likeness

and the soft dynamics of an event. We consider the double differential top and antitop

invariant mass distribution, where each of the invariant masses, M2
t and M2

t̄ , are defined

from all particles in each of the two hemispheres that are determined by the events thrust

axis. In Fig. 1 we show an example of such an event. Other invariant mass definitions,

e.g. based on kT algorithms and criteria to identify jets from top and antitop decay can be

employed as well. Our approach also works for all-jet and lepton plus jet final states. Our

focus is to study the double differential invariant mass distribution in the peak region close

to the top mass, so that M2
t −m2 ∼ mΓ and M2

t̄ −m2 ∼ mΓ. It is theoretically convenient

to introduce the shifted variables

ŝt,t̄ ≡
st,t̄

m
≡

M2
t,t̄ − m2

m
∼ Γ % m , (1)

because it is only the invariant mass distribution close to the peak that we wish to predict.
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Basic Idea

Hemisphere invariant mass distribution

Dijet Event

SCET

Jets with 

Integrate 

out mboosted HQET

Jets with 

JET JET

SOFT

SOFT

Isgur, Wise
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Expected Result

Tree Level Breit Wigner Curves?

• A first guess might be that the distribution is a product of Breit Wigner curves.

d2σ
dst dst̄

∣∣∣
tree level

=

-0.04 -0.02 0.02 0.04

50

100

150

200

• Furthermore large logarithms can affect these curves.

• We will find that this is not always true even at tree level due to nonperturbative 

effects.

-0.04 -0.02 0.02 0.04

50

100

150

200

This is not correct even at tree level!
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Relevant Energy Scales 

• Center of mass energy                          

• Top quark mass   m∼ 174GeV

• Top quark width Γ∼ 2GeV

Q∼ 1TeV

• Confinement Scale Λ∼ 500MeV

 Disparate energy scales Effective Field Theory!
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Group Photo of Effective Field Theories
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FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

I. INTRODUCTION

Outline for this paper.

• Section I. Introduction, discussion of perturbative corrections to be computed, shape

function, Breit-Wigner, matching.

• Section II. Recap of the factorization theorem from the other paper (remove the deriva-

tion from this draft) and of the observable to be treated (only the final one from the

other paper).

• Section III. SCET computations, matching from QCD. Computation of the running.

• Section IV. bHET computations, matching and running. Results in schemes other

than the pole mass scheme.

• Section V. Final resummed cross-section. Results shown for i) tree level, ii) LL (up

to 1/ε in the anom.dim. with tree level matching), iii) one-loop LL, as in ii) but also

including the one-loop matching results in the boundary conditions in case the log

summation and αs corrections are of similar size. This is a hybrid LL-NLO.

• Section VI. Conclusion

An important outstanding theoretical issue is the formulation of a consistent framework

which incorporates finite width effects in the production of massive unstable particles such

as the top quark or the W boson. The issue is a pressing one in the era of the large hadron

collider (LHC) with expectations of a wealth of data where QCD backgrounds involving

top quarks and W bosons must be understood at a precision level in order to tease out

measurements of exotic new physics. For example tt̄ production is a significant background

3
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 Hard Wilson 

Coefficient 

 Top Jet 

Function

 Anti-Top Jet 

Function

 Soft Cross Talk

Function

SCET Cross-section

• In the hemisphere scenario the SCET cross section takes the form:

Using Eq.(79) and performing all the remaining integrals in the cross-section of Eq.(76) we

arrive at the SCET result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q,µ)

∫ ∞

−∞
d"+d"− Jn(st − Q"+, µ)Jn̄(st̄ − Q"−, µ)Shemi("

+, "−, µ) , (81) {SCETcross-hem}

where the hard function HQ(Q,µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi("
+, "−, µ) =

1

Nc

∑

Xs

δ("+ − k+a
s )δ("− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi("+, "−) =

δ("+)δ("−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
n Yn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi("+, "−) is governed by non-perturbative QCD

effects. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

F. Factorization of Jet mass effects in HQET
{subsectionfactorizationtheorem}

The main result of the last subsection is the factorization of the scales Q and m in the

differential cross section of Eq. (81). To sum large logs in this result the SCET production

current can be run from µ = Q down to µ = m, which then characterizes the typical virtual-

ity of the collinear degrees of freedom in massive SCET. In the process, large logarithms of

Q/m are summed into the Wilson coefficient C(Q, µ). However, at this stage the differential

cross-section still contains large logarithms of Γ/m and ŝn,n̄/m in the jet functions, and of

∆/m in the soft function. These large logs can spoil the perturbative computation of the

jet functions Jn and Jn̄. To sum these logarithms requires us to match at and run below

the scale µ = m. This can be done in the “usual” way by matching and running of the

bHQET current in Eq. (33). But due to the factorization properties of SCET which leads

to a decoupling of the n-collinear, n̄-collinear, and soft sectors, the matching and running

below the scale µ = m can also be done independently for Jn, Jn̄, and S. In the following

we explain this second method of summing the remaining logarithms.

As discussed in Sec. II B the soft function above and below the scale m is identical. Large

logarithms in the soft function can be summed by computing the anomalous dimension of
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫

d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫

d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞

d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%
+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†

n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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Universal 

nonperturbative

soft function

Calculable 

perturbative top 

and antitop jet 

functions

•The same soft function appears in massless dijets(Korchemsky & Sterman; Bauer, 
Lee, Manohar, Wise).
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• Note that the logs in the Wilson coefficient vanish by choosing scale:

One Loop Matching of SCET onto BHQET
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!m2

FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

B. SCET Jet Functions and their Running
{sect:scetjet}

Next we compute the SCET jet functions Jn and Jn̄, defined in Eq. (18), perturbatively

in αs. By the symmetry n ↔ n̄, the results for Jn and Jn̄ are identical, so for convenience

we focus on the former. The purpose of this calculation is two-fold. First we determine ZJn

by renormalizing the jet function, and hence determine the anomalous dimension γJn and

evolution kernel UJn . Second the value of the renormalized jet function is needed for the

matching onto bHQET at a scale µ " m, which we perform in section ?? below. Since both

this running and matching are independent of infrared physics below m we are free to carry

it out for free stable top quark states. Thus in this section we set the electroweak coupling

g2 = 0.

From Eq. (18), the tree-level jet funtions are simply given by the discontinuity of the

collinear propagator:

J tree
n,Q (s, m, Γ = 0, µ) = δ(s). (59)

At one loop, the jet functions are given by the discontiniuities of the diagrams shown in

Fig. 5. Results for these graphs are summarized in Eq. (A9) of Appendix (A), and give

J5a+J5b+J5c+J5d+J5e (60) {Jabcdesum}

=
iαsCF

8π2 s

{
4

ε2
+

4

ε
ln

( µ2

−s

)
+

3

ε
+2 ln2

( µ2

−s

)
+2 ln2

(m2

−s

)
+3 ln

( µ2

m2

)
−4 ln

(−s

m2

)
+8+π2

}
,

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using

Disc
i

2π

1

x + i0
= δ(x), Disc

i

2π

ln(−x− i0)

x + i0
=

[θ(x)

x

]

+
,

Disc
i

2π

ln2(−x− i0)

x + i0
= −π2

3
δ(x) +

[2θ(x)ln(x)

x

]

+
, (61) {discontinuities}
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a) b) c)

FIG. 8: bHQET graphs for the top-quark jet function. {forwardII}

B. bHQET Jet functions Matching and Running

Next we compute the bHQET jet functions defined in Eq. (21) perturbatively in αs. As

in the SCET section the results for B+ and B− are related by v+ ↔ v−. We determine the

bHQET jet function renormalization factor ZB, the jet anomalous dimension γB, and the

evolution kernel UB. We also match onto the SCET jet function and verify the consistency

conditions for local running.

At tree level the bHQET jet function are given by the discontinuity of the HQET prop-

agator which includes the width. Thus

Btree
+ (ŝ) =

Γ

s2 + Γ2
. (91)

At one loop the jet function is given by the discontinuities of the diagrams shown in Fig. (8).

Results for individual graphs is given in the appendix. The sum of graphs is

B8a + B8b + B8c =
iαsCF

8π2s

{
2

ε2
+

4

ε
ln

(
µm

−s− imΓ

)
+

2

ε

+ 4 ln2

(
µm

−si−mΓ

)
+ 4 ln

(
µm

−s− imΓ

)
+ 4 +

5π2

6

}
(92)

Taking the discontinuity gives

Bbare
± (ŝ) =

1

π

mΓ

s2 + m2Γ2

{
1 +

αsCF

4π

[
2

ε2
+

2

ε

(
ln

(
µ2m2

s2 + m2Γ2

)
+

2s

mΓ
arctan

(
mΓ

s

))
+

2

ε

+ln2

(
µ2m2

s2 + m2Γ2

)
+ 2 ln

(
µ2m2

s2 + m2Γ2

)
− 4arctan2

(
mΓ

s

)

+4
s

mΓ
arctan

(
mΓ

s

)(
ln

(
µ2m2

s2 + m2Γ2

)
+ 1

)
+ 4 +

5π2

6

]}
. (93)

The counterterm which subtracts off these divergences when convoluted with the bare

bHQET jet function is

ZB±(s−s′) = δ(s−s′)+
αsCF

4π

{
δ(s−s′)

[
2

ε2
+

4

ε
ln

(
µm

κ2
1

)
+

2

ε

]
− 4

κ2
1ε

[
κ2

1θ(s
′ − s)

s′ − s

]

+

}
. (94) {ZBp}

Note we have allowed for an arbitrary rescaling of s → κ2
1x. To determine the bHQET jet

function Wilson coefficient at order αs we need to match the one loop bHQET result to the

one loop SCET result in Eq. (67). However, the result in Eq. (67) is valid for stable tops.
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However, it is simpler to work with the one loop result before taking the discontinuity which

we denote by B. The bare expression for this quantity is given by

Bbare
± (ŝ) =

i

2πm

1

ŝ + iΓ

{
1 +

iαsCF

4π

[
2

ε2
+

4

ε
ln

(
µ

−ŝ− iΓ

)
+

2

ε

+4 ln2

(
µ

−ŝ− iΓ

)
+ 4 ln

(
µ

−ŝ− iΓ

)
+ 4 +

5π2

6

]}
. (90)

Taking the discontinuity of Bbare
± gives the bHQET jet function at one loop

Bbare
± (ŝ) =

1

πm

Γ

ŝ2 + Γ2

{
1 +

αsCF

4π

[
2

ε2
+

2

ε

(
ln

(
µ2

ŝ2 + Γ2

)
+

2ŝ

Γ
arctan

(
Γ

ŝ

))
+

2

ε

+ln2

(
µ2

ŝ2 + Γ2

)
+ 2 ln

(
µ2

ŝ2 + Γ2

)
− 4arctan2

(
Γ

ŝ

)

+4
ŝ

Γ
arctan

(
Γ

ŝ

)(
ln

(
µ2

ŝ2 + Γ2

)
+ 1

)
+ 4 +

5π2

6

]}
. (91)

The counterterm and bHQET matching coefficient can be obtained from either Eq. (90) or

Eq. (91). However the solution of the RGE is much simpler to obtain if we work with Bbare
± ,

which we will do from here on out. The counterterm which subtracts off the divergences

from either Eq. (90) or Eq. (91) when convoluted with the renormalized bHQET jet function

is

ZB±(ŝ− ŝ′) = δ(ŝ− ŝ′)+
αsCF

4π

{
δ(ŝ− ŝ′)

[
2

ε2
+

4

ε
ln

(
µ

κ3

)
+

2

ε

]
− 4

κ3ε

[
κ3θ(ŝ− ŝ′)

ŝ− ŝ′

]

+

}
. (92) {ZBp}

Note care must be taken when computing the integral in Eq. (37) when the plus function

above is convoluted with the tree-level Breit-Wigner. We have allowed for an arbitrary

rescaling of ŝ→ κ3 x. To determine the bHQET jet function Wilson coefficient at order αs

we need to match the one loop bHQET result to the one loop SCET result. Since we are

working with B± we can match to the SCET result before taking the discontinuity. At tree

level this is given by the collinear propagator, and at one loop the result is given by Eq. (57).

Since the top quark is stable in SCET we take the Γ→ 0 limit of Eq. (90) in the matching.

We obtain

T±(µ, m) = 1 +
αsCF

4π

(
ln2m2

µ2
− ln

m2

µ2
+ 4 +

π2

6

)
. (93)

The logarithms are minimized at the matching scale µ ≈ m.

Next we turn to the running of the bHQET jet function. The anomalous dimension

determined from Eq. (92) is

γB±(ŝ− ŝ′, µ) =
αsCF

π

{
2

[
κ3θ(ŝ′ − ŝ)

ŝ′ − ŝ

]

+

−
[
2ln

(
µ

κ3

)
+ 1

]
δ(s′ − s)

}
(94)
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FIG. 5: Scales and functions appearing in the formula for the invariant mass distribution. The

result is determined by matching at the physical scales and running to sum large logs as shown. We
show both the top-down and bottom-up approach to the running. The evolution for UH and UC

is local, while all other evolution functions involve convolutions. Note that the evolution functions

obey UH = UJ− ⊗ UJ+ ⊗ US and UC = UB− ⊗ UB+ ⊗ US where ⊗ indicates convolutions.

F. Factorization of Jet mass effects in HQET

The main result of the last subsection is the factorization of the scales Q and m in the

differential cross section of Eq. (81). In this section we further factorize the scale m from the

low energy scales Γ, ŝ, and ∆. This will allow us to sum large logs of Γ/m and ŝt,t̄/m in the

jet functions, and lower the scale of the soft functions to ∆. This step is also important for

treating the width effects. As explained earlier, one can formulate width effects in a gauge

invariant way with a natural power counting in HQET, whereas doing so in a relativistic

theory such as SCET is notoriously difficult.

To perform the scale separation and sum the logarithms requires us to match and run

below the scale µ = m. This can be done in a standard way, by matching and running of the

bHQET current in Eq. (35), as we described in section IIB. However, due to the factorization

properties of SCET which leads to a decoupling of the n-collinear, n̄-collinear, and soft

sectors, the matching and running below the scale µ = m can also be done independently

for Jn, Jn̄, and S. In the following we explain this second method.

As discussed in Sec. II B the soft function above and below the scale m is identical. Large

logarithms in the soft function can be summed by computing the anomalous dimension of

the soft function and using RG evolution to run between ∆ and Q as illustrated by the line

labeled US in Fig. 5. For the soft function there is no need to match onto a “new” EFT

below m since unlike in the case of the collinear jet functions there is essentially no physics

that needs to be integrated out at m.
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(

m, µm

)

= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)

=
1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(

m,
Q

m
, µm, µ

)

(90)

×
∫ ∞

−∞

d$+d$− B+

(

ŝt −
Q$+

m
, Γ, µ

)

B−

(

ŝt̄ −
Q$−

m
, Γ, µ

)

Shemi($
+, $−, µ).
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form for the differential cross section is
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FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using
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we find that up to one-loop order the bare SCET jet function is
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(59) {Jbare}

This implies that the Z-factor defined in Eq. (28) is
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which gives the anomalous dimension
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Despite appearances Jbare
n (s), ZJn(s− s′), and γJn(s− s′) are all independent of the choice

for κ1. In Appendix C we presented a general solution to anomalous dimension equations in-

volving a +-function and δ-function. Applying this to Eq. (61) to derive the renormalization

group evolution from a low-scale µm up to µ gives
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µ2

m eγE
)ω1

Γ(−ω1)

[
θ(s−s′)

(s−s′)1+ω1

]
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where

ω1(µ, µm) = −4CF
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ln

[ αs(µ)
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]
, eL1(µ,µm) =

( µ

µm

)8CF
β0

[
αs(µ)

αs(µm)

] 16πCF
β2
0αs(µm)

− 3CF
β0

. (63) {wL1}
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Integrate out the top quark mass by matching the jet functions 
from SCET onto HQET:
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FIG. 5: Tree level top-quark jet functions in a) SCET and b) bHQET. {fig:Bjet}

graphs in Fig. 5 which have a trace over spin and color indices. This gives for Γ = 0 and in

the pole mass scheme

BΓ=0
+ (ŝ) =

−1

4πNcm
(−Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1. Plugging Eq. (87) into Eq. (81), the final form for differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q,µm)Hm

(
m,

Q

m
, µm, µ

)
(90) {bHQETcross-hem}

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ) ,

where we still have HQ(Q, µ) = |C(Q, µ)|2 and the soft function

Shemi($
+, $−, µ) =

1

Nc

∑

Xs

δ($+ − k+a
s )δ($− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (91)

Note that Eq. (90) depends on two renormalization scales, µm and µ. The matching scale

µm ∼ m was the endpoint of the evolution of the hard function HQ(Q, µm). From the

matching at m we get the dependence on µm in Hm, and from running below m we get

in addition a dependence on µ which cancels against dependence on µ in the bHQET jet

functions and the soft function.

So to sum the remaining large logarithms we have in principle two choices. We can either

run the Wilson coefficient Hm of we run the individual functions B± and S. The first option

essentially corresponds to running the bHQET top pair production current of Eq. (33), and

we will call this method “top-down”. The relation

Hm

(
m,

Q

m
, µm, µ

)
= Hm(m, µm)UHm(µm, µ) (92)

defines the corresponding evolution factor UHm that is shown in Fig. 4. The second option

means running the jet functions B± and the soft function Shemi independently with the

evolution factors UB±(µ, µm) and US(µ, µm) respectively, as is also illustrated in Fig. 4. This

running involves convolutions, such as

µ
d

dµ
B+(ŝ, µ) =

∫
dŝ′ γB+(ŝ− ŝ′) B+(ŝ′, µ) ,

B+(ŝ, µm) =

∫
dŝ′ UB+(ŝ− ŝ′, µm, µ) B+(ŝ′, µ) , (93) {Brun}
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B+(ŝ, µm) =

∫
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Define a short-distance “jet” mass:

Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is

supposed to be a perturbative correction. This means that it is not the MS mass that is

ever directly measured from any reconstruction mass-measurement that uses a top Breit-

Wigner at some level of the analysis. We stress that this statement applies to any top mass

determination that relies on the reconstruction of the peak position of an invariant mass

distribution.

To define a short distance scheme for jet reconstruction measurements, mJ , we choose the

residual mass term δmJ such that, order-by-order, the jet functions B± have their maximum

at ŝt = ŝt̄ = 0, where B+(ŝ) is the gauge invariant function defined in Eq. (84). So order-

by-order in perturbation theory the definition is given by the solution to

dB+(ŝ, µ, δmJ)

dŝ

∣∣∣∣
ŝ=0

= 0 . (96)

We call this mass definition the top quark jet-mass, mJ(µ) = mpole−δmJ . Since the bHQET

jet functions have a nonvanishing anomalous dimension, the top jet-mass depends on the

renormalization scale µ, at which the jet functions are computed perturbatively. Thus the

jet-mass is a running mass, similar to the MS mass, and different choices for µ ∼ Γ can in

principle be made.

To simplify the notation we will use the notation B̃+(ŝ, µ) for the bHQET jet-function

in the jet-mass scheme. At next-to-leading order in αs,

B̃+

(
ŝt −

Q#+

mJ
, µ

)
= B+

(
ŝ− Q#+

mJ
, µ

)
+

1

πmJ

(4 ŝΓ) δmJ

(ŝ2 + Γ2)2
, (97)

where mJ = mJ(µ) and B+ is the pole-mass jet function to O(αs). Here we dropped all

corrections that are power suppressed by Γ/m. The one-loop relation between the pole and

jet-mass is [60]

mJ(µ) = mpole − Γ
αs(µ)

3

[
ln

(µ

Γ

)
+

3

2

]
. (98)

For µ = Γ we have δmJ # 0.26 GeV, so the jet-mass is quite close to the one-loop pole mass.

Equation (98) also shows that the jet-mass is substantially different from the short-distance

masses that are employed for tt̄-threshold analyses [12], where δm ∼ α2
sm ∼ 2 GeV is of

order the binding energy of the tt̄ quasi-bound state. Nevertheless, in some of the threshold

mass schemes [54, 55] δm is proportional to a cutoff scale that could in principle be adapted

such that they are numerically close to the jet-mass we are proposing. A detailed discussion

on the impact of switching from the pole to the jet-mass scheme at the one-loop level and at

higher orders will be given in Refs. [60] and [66], respectively. We remark that many other

schemes satisfying Eq. (94) can in principle be defined, but the existence of one such scheme

suffices.
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FIG. 10: Perturbative shifts in peak position for the pole and jet mass schemes. The peak position
is stable in the jet mass scheme. {fig:shortmass}

define resummed jet masses where one applies the condition of Eq.(104) to the LL, NLL,

etc. resummed jet bHQET jet functions. Including such higher order effects will further

improve the perturbative stability of the peak position.

The perturbative behavior of the peak position determined by the bHQET jet functions in

the pole and jet mass schemes are shown in Fig. 10. We see that while the peak position shifts

in the pole mass scheme it remains stable in the jet mass scheme. As a result, experimentally

one will be sensitive to the jet mass. Once this jet mass is extracted from experiment it can

be related to the more familiar pole mass via Eq.(102) or any other mass scheme such as

the MSbar mass through it’s well known perturbative relation to the pole mass.

VII. CONCLUSION
{sect:conclusion}

In ref [2], we introduced an EFT formalism that allows one to extract the top mass to

high precision from jet invariant mass distributions in a linear collider environment. We

studied the production of high energy top jets in the dijet region through the parton level

process e+e− → tt̄. The EFT formalism allows us to give detailed predictions for the

double differential jet invariant mass distribution in the peak region where the top and

antitop are produced close to their mass shell. More importantly, we established a clear and

well defined relation between the Lagrangian top mass parameter m and the observed jet

invariant mass distribution. This was done by matching and running through a sequence of

effective field theories: QCD → SCET → boosted unstable HQET. In ref [2], we focused

on the construction and development of the formalism leaving out detailed computations

beyond tree level.

In this paper, we have bridged the gap and provided detailed calculations at the one

loop level. We have provided one loop matching and anomalous dimension calculations,

performed leading log resummations, defined an appropriate short distance top mass scheme,

and quantitatively explored the properties of the jet invariant mass distributions and their

sensitivity to the top mass. The top mass is shown to be sensitive to the peak position of

33

Short Distance Top Jet Mass

•Define the short distance top jet mass 

scheme as:

•In the jet mass scheme the NLO jet function 

is modified as:

•At NLO the jet mass is related to the pole mass scheme as follows:

the notion of a top-quark Breit Wigner distribution becomes invalid. The most prominent

example for an excluded short-distance mass scheme is the MS mass scheme, m, for which

mpole−m = δm. Here δm " 8 GeV # Γ, or parametrically δm ∼ αsm# Γ. Using Eq. (95)

and converting to the MS scheme with the O(αs) residual mass term we have

B+(ŝ, µ, δm ) =
1

πm

{
Γ

[ (M2
t −m2)2

m2 + Γ2
] +

(4 ŝ Γ) δm
[ (M2

t −m2)2

m2 + Γ2
]2

}
. (95)

Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is

supposed to be a perturbative correction. This means that it is not the MS mass that is

ever directly measured from any reconstruction mass-measurement that uses a top Breit-

Wigner at some level of the analysis. We stress that this statement applies to any top mass

determination that relies on the reconstruction of the peak position of an invariant mass

distribution.

To define a short distance scheme for jet reconstruction measurements, mJ , we choose the

residual mass term δmJ such that, order-by-order, the jet functions B± have their maximum

at ŝt = ŝt̄ = 0, where B+(ŝ) is the gauge invariant function defined in Eq. (84). So order-

by-order in perturbation theory the definition is given by the solution to

dB+(ŝ, µ, δmJ)

dŝ
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ŝ=0

= 0 . (96)

We call this mass definition the top quark jet-mass, mJ(µ) = mpole−δmJ . Since the bHQET

jet functions have a nonvanishing anomalous dimension, the top jet-mass depends on the

renormalization scale µ, at which the jet functions are computed perturbatively. Thus the

jet-mass is a running mass, similar to the MS mass, and different choices for µ ∼ Γ can in

principle be made.

To simplify the notation we will use the notation B̃±(ŝ, µ) for the bHQET jet-functions

in the jet-mass scheme. At next-to-leading order in αs,

B̃±(ŝ, µ) = B±(ŝ, µ) +
1

πmJ

(4 ŝ Γ) δmJ

(ŝ2 + Γ2)2
, (97)

where mJ = mJ(µ) and B+ is the pole-mass jet function to O(αs). Here we dropped all

corrections that are power suppressed by Γ/m. The one-loop relation between the pole and

jet-mass is [? ]

mJ(µ) = mpole − Γ
αs(µ)

3

[
ln

(µ

Γ

)
+

3

2

]
. (98)

For µ = Γ we have δmJ " 0.26 GeV, so the jet-mass is quite close to the one-loop pole mass.

Equation (??) also shows that the jet-mass is substantially different from the short-distance

masses that are employed for tt̄-threshold analyses [9], where δm ∼ α2
sm ∼ 2 GeV is of order

the binding energy of the tt̄ quasi-bound state. Nevertheless, in some of the threshold mass
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We call this mass definition the top quark jet-mass, mJ(µ) = mpole−δmJ . Since the bHQET

jet functions have a nonvanishing anomalous dimension, the top jet-mass depends on the

renormalization scale µ, at which the jet functions are computed perturbatively. Thus the

jet-mass is a running mass, similar to the MS mass, and different choices for µ ∼ Γ can in
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To simplify the notation we will use the notation B̃+(ŝ, µ) for the bHQET jet-function
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where mJ = mJ(µ) and B+ is the pole-mass jet function to O(αs). Here we dropped all

corrections that are power suppressed by Γ/m. The one-loop relation between the pole and

jet-mass is [60]

mJ(µ) = mpole − Γ
αs(µ)

3

[
ln
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Γ
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3

2

]
. (98)

For µ = Γ we have δmJ # 0.26 GeV, so the jet-mass is quite close to the one-loop pole mass.

Equation (98) also shows that the jet-mass is substantially different from the short-distance

masses that are employed for tt̄-threshold analyses [12], where δm ∼ α2
sm ∼ 2 GeV is of

order the binding energy of the tt̄ quasi-bound state. Nevertheless, in some of the threshold

mass schemes [54, 55] δm is proportional to a cutoff scale that could in principle be adapted

such that they are numerically close to the jet-mass we are proposing. A detailed discussion

on the impact of switching from the pole to the jet-mass scheme at the one-loop level and at

higher orders will be given in Refs. [60] and [66], respectively. We remark that many other

schemes satisfying Eq. (94) can in principle be defined, but the existence of one such scheme

suffices.
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)
= B+

(
ŝ− Q#+

mJ
, µ

)
+

1

πmJ

(4 ŝΓ) δmJ

(ŝ2 + Γ2)2
, (97)

where mJ = mJ(µ) and B+ is the pole-mass jet function to O(αs). Here we dropped all

corrections that are power suppressed by Γ/m. The one-loop relation between the pole and

jet-mass is [60]

mJ(µ) = mpole − Γ
αs(µ)

3

[
ln

(µ

Γ

)
+

3

2

]
. (98)

For µ = Γ we have δmJ # 0.26 GeV, so the jet-mass is quite close to the one-loop pole mass.

Equation (98) also shows that the jet-mass is substantially different from the short-distance

masses that are employed for tt̄-threshold analyses [12], where δm ∼ α2
sm ∼ 2 GeV is of

order the binding energy of the tt̄ quasi-bound state. Nevertheless, in some of the threshold

mass schemes [54, 55] δm is proportional to a cutoff scale that could in principle be adapted

such that they are numerically close to the jet-mass we are proposing. A detailed discussion

on the impact of switching from the pole to the jet-mass scheme at the one-loop level and at

higher orders will be given in Refs. [60] and [66], respectively. We remark that many other

schemes satisfying Eq. (94) can in principle be defined, but the existence of one such scheme

suffices.

37

0.1

0.2

0.3

-4 -2 0 +2 +4

M2
t −m2

m

!GeV"

pole
scheme

Jet
scheme

µ = 2, 5 GeV

FIG. 10: Perturbative shifts in peak position for the pole and jet mass schemes. The peak position
is stable in the jet mass scheme. {fig:shortmass}

define resummed jet masses where one applies the condition of Eq.(104) to the LL, NLL,

etc. resummed jet bHQET jet functions. Including such higher order effects will further

improve the perturbative stability of the peak position.

The perturbative behavior of the peak position determined by the bHQET jet functions in

the pole and jet mass schemes are shown in Fig. 10. We see that while the peak position shifts

in the pole mass scheme it remains stable in the jet mass scheme. As a result, experimentally

one will be sensitive to the jet mass. Once this jet mass is extracted from experiment it can

be related to the more familiar pole mass via Eq.(102) or any other mass scheme such as

the MSbar mass through it’s well known perturbative relation to the pole mass.

VII. CONCLUSION
{sect:conclusion}

In ref [2], we introduced an EFT formalism that allows one to extract the top mass to

high precision from jet invariant mass distributions in a linear collider environment. We

studied the production of high energy top jets in the dijet region through the parton level

process e+e− → tt̄. The EFT formalism allows us to give detailed predictions for the

double differential jet invariant mass distribution in the peak region where the top and

antitop are produced close to their mass shell. More importantly, we established a clear and

well defined relation between the Lagrangian top mass parameter m and the observed jet

invariant mass distribution. This was done by matching and running through a sequence of

effective field theories: QCD → SCET → boosted unstable HQET. In ref [2], we focused

on the construction and development of the formalism leaving out detailed computations

beyond tree level.

In this paper, we have bridged the gap and provided detailed calculations at the one

loop level. We have provided one loop matching and anomalous dimension calculations,

performed leading log resummations, defined an appropriate short distance top mass scheme,

and quantitatively explored the properties of the jet invariant mass distributions and their

sensitivity to the top mass. The top mass is shown to be sensitive to the peak position of
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Short Distance Top Jet Mass

•Define the short distance top jet mass 

scheme as:

•In the jet mass scheme the NLO jet function 

is modified as:

•At NLO the jet mass is related to the pole mass scheme as follows:

the notion of a top-quark Breit Wigner distribution becomes invalid. The most prominent

example for an excluded short-distance mass scheme is the MS mass scheme, m, for which

mpole−m = δm. Here δm " 8 GeV # Γ, or parametrically δm ∼ αsm# Γ. Using Eq. (95)

and converting to the MS scheme with the O(αs) residual mass term we have

B+(ŝ, µ, δm ) =
1

πm

{
Γ

[ (M2
t −m2)2

m2 + Γ2
] +

(4 ŝ Γ) δm
[ (M2

t −m2)2

m2 + Γ2
]2

}
. (95)

Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is

supposed to be a perturbative correction. This means that it is not the MS mass that is

ever directly measured from any reconstruction mass-measurement that uses a top Breit-

Wigner at some level of the analysis. We stress that this statement applies to any top mass

determination that relies on the reconstruction of the peak position of an invariant mass

distribution.

To define a short distance scheme for jet reconstruction measurements, mJ , we choose the

residual mass term δmJ such that, order-by-order, the jet functions B± have their maximum

at ŝt = ŝt̄ = 0, where B+(ŝ) is the gauge invariant function defined in Eq. (84). So order-

by-order in perturbation theory the definition is given by the solution to

dB+(ŝ, µ, δmJ)

dŝ

∣∣∣∣
ŝ=0

= 0 . (96)

We call this mass definition the top quark jet-mass, mJ(µ) = mpole−δmJ . Since the bHQET

jet functions have a nonvanishing anomalous dimension, the top jet-mass depends on the

renormalization scale µ, at which the jet functions are computed perturbatively. Thus the

jet-mass is a running mass, similar to the MS mass, and different choices for µ ∼ Γ can in

principle be made.

To simplify the notation we will use the notation B̃±(ŝ, µ) for the bHQET jet-functions

in the jet-mass scheme. At next-to-leading order in αs,

B̃±(ŝ, µ) = B±(ŝ, µ) +
1

πmJ

(4 ŝ Γ) δmJ

(ŝ2 + Γ2)2
, (97)

where mJ = mJ(µ) and B+ is the pole-mass jet function to O(αs). Here we dropped all

corrections that are power suppressed by Γ/m. The one-loop relation between the pole and

jet-mass is [? ]

mJ(µ) = mpole − Γ
αs(µ)

3

[
ln

(µ

Γ

)
+

3

2

]
. (98)

For µ = Γ we have δmJ " 0.26 GeV, so the jet-mass is quite close to the one-loop pole mass.

Equation (??) also shows that the jet-mass is substantially different from the short-distance

masses that are employed for tt̄-threshold analyses [9], where δm ∼ α2
sm ∼ 2 GeV is of order

the binding energy of the tt̄ quasi-bound state. Nevertheless, in some of the threshold mass
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Peak Position at NLO.
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Systematic summation of logarithms

Summary & Outlook
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Factorization
Well defined characterization of non-perturbative effects

Exact & Systematic relation of peak to Lagrangian mass

Mass peak shifted by non-perturbative physics
Jet mass 
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established factorization theorem for invariant mass distributions: 

separation of perturbative and non-perturbative effects

applicable for many other systems and setups: (any colored unstable 

particle, W mass reconstruction, etc..)

exact and systematic relation of peak to a Lagrangian mass: What 

mass is measured ?   “Jet-mass”

resummation of large logarithms 

soft gluon color reconnection power suppressed

Here: 
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different mass definitions (cone, k_T)
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W mass
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more loops(large p_T)
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Summary & Outlook

established factorization theorem for invariant mass distributions: 

separation of perturbative and non-perturbative effects

applicable for many other systems and setups: (any colored unstable 

particle, W mass reconstruction, etc..)

exact and systematic relation of peak to a Lagrangian mass: What 

mass is measured ?   “Jet-mass”

resummation of large logarithms 

soft gluon color reconnection power suppressed

Here: 

Planned:                                  

different mass definitions (cone, k_T)

renormalons
W mass
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